Propagating phase boundaries and capillary fluids

نویسنده

  • Sylvie Benzoni-Gavage
چکیده

The aim is to give an overview of recent advancements in the theory of Euler–Korteweg model for liquid-vapour mixtures. This model takes into account the surface tension of interfaces by means of a capillarity coefficient. The interfaces are not sharp fronts. Their width, even though extremely small for values of the capillarity compatible with the measured, physical surface tension, is nonzero. We are especially interested in nondissipative isothermal models, in which the viscosity of the fluid is neglected and therefore the (extended) free energy, depending on the density and its gradient, is a conserved quantity. From the mathematical point of view, the resulting conservation law for the momentum of the fluid involves a third order, dispersive term but no parabolic smoothing effect. We present recent results about well-posedness and propagation of solitary waves. Acknowledgements These notes have been prepared for the International Summer School on “Mathematical Fluid Dynamics”, held at Levico Terme (Trento), June 27th-July 2nd, 2010. They are based for a large part on a joint work with R. Danchin (Paris 12), S. Descombes (Nice), and D. Jamet (physicist at CEA Grenoble), on the doctoral thesis of C. Audiard (Lyon 1), and on discussions with J.-F. Coulombel (Lille 1), F. Rousset (Rennes), and N. Tzvetkov (Cergy-Pontoise).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Numerical Study of Capillary-driven Flow in a 3-D Microchannel Model

In this article, we demonstrate a numerical 3-D chip, and studied the capillary dynamics inside the microchannel. We applied the level set method on the Navier-Stokes equation which incorporates the surface tension and two-phase flow characteristics. We analyzed the capillary dynamics near the junction of two microchannels. Such a highlighting point is important that it not only can provide the...

متن کامل

STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.

Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...

متن کامل

Phase Equilibrium Calculations for Confined Fluids, including Surface Tension Prediction Models

Phase equilibrium calculations for fluids confined inside capillary tubes or porous media are formulated using the isofugacity equations. In this situation, the phase pressures are not equal and it is assumed that they are related by the Laplace equation. With this formulation, existing procedures for phase equilibrium calculations can be readily modified to include capillary effects. In this p...

متن کامل

Trapping and mobilization of residual fluid during capillary desaturation in porous media.

We discuss the problem of trapping and mobilization of nonwetting fluids during immiscible two-phase displacement processes in porous media. Capillary desaturation curves give residual saturations as a function of capillary number. Interpreting capillary numbers as the ratio of viscous to capillary forces the breakpoint in experimental curves contradicts the theoretically predicted force balanc...

متن کامل

Nonuniqueness of Phase Transitions near the Maxwell Line

We consider the description of propagating phase boundaries in a van der Waals uid by means of viscocapillary prooles, which are viewed as heteroclinic orbits connecting nonhyperbolic xed points of a ve dimensional dynamical system. A bifurcation analysis enables us to show that, for small viscosities, some distinct propagating phase boundaries share the same metastable state on one side of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011